Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14424, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660169

RESUMO

Rhizosphere microbes, such as root-associated fungi, can improve plant access to soil resources, affecting plant health, productivity, and stress tolerance. While mycorrhizal associations are ubiquitous, plant-microbe interactions can be species specific. Here we show that the specificity of the effects of microbial symbionts on plant function can go beyond species level: colonization of roots by ectomycorrhizal fungi (EMF) of the genus Geopora has opposite effects on water uptake, and stomatal control of desiccation in drought tolerant and intolerant genotypes of pinyon pine (Pinus edulis Engelm.). These results demonstrate, for the first time, that microorganisms can have significant and opposite effects on important plant functional traits like stomatal control of desiccation that are associated with differential mortality and growth in nature. They also highlight that appropriate pairing of plant genotypes and microbial associates will be important for mitigating climate change impacts on vegetation.


Assuntos
Micorrizas , Pinus , Micorrizas/genética , Genótipo , Fenótipo , Transporte Biológico
2.
New Phytol ; 240(6): 2298-2311, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37680030

RESUMO

Populus fremontii is among the most dominant, and ecologically important riparian tree species in the western United States and can thrive in hyper-arid riparian corridors. Yet, P. fremontii forests have rapidly declined over the last decade, particularly in places where temperatures sometimes exceed 50°C. We evaluated high temperature tolerance of leaf metabolism, leaf thermoregulation, and leaf hydraulic function in eight P. fremontii populations spanning a 5.3°C mean annual temperature gradient in a well-watered common garden, and at source locations throughout the lower Colorado River Basin. Two major results emerged. First, despite having an exceptionally high Tcrit (the temperature at which Photosystem II is disrupted) relative to other tree taxa, recent heat waves exceeded Tcrit , requiring evaporative leaf cooling to maintain leaf-to-air thermal safety margins. Second, in midsummer, genotypes from the warmest locations maintained lower midday leaf temperatures, a higher midday stomatal conductance, and maintained turgor pressure at lower water potentials than genotypes from more temperate locations. Taken together, results suggest that under well-watered conditions, P. fremontii can regulate leaf temperature below Tcrit along the warm edge of its distribution. Nevertheless, reduced Colorado River flows threaten to lower water tables below levels needed for evaporative cooling during episodic heat waves.


Assuntos
Populus , Árvores , Árvores/fisiologia , Populus/fisiologia , Folhas de Planta/fisiologia , Sudoeste dos Estados Unidos , Temperatura
3.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386149

RESUMO

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Assuntos
Reprodução , Árvores , Fertilidade , Sementes , Saciação
4.
Mol Ecol ; 31(19): 5024-5040, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947510

RESUMO

Selection on quantitative traits by heterogeneous climatic conditions can lead to substantial trait variation across a species range. In the context of rapidly changing environments, however, it is equally important to understand selection on trait plasticity. To evaluate the role of selection in driving divergences in traits and their associated plasticities within a widespread species, we compared molecular and quantitative trait variation in Populus fremontii (Fremont cottonwood), a foundation riparian distributed throughout Arizona. Using SNP data and genotypes from 16 populations reciprocally planted in three common gardens, we first performed QST -FST analyses to detect selection on traits and trait plasticity. We then explored the environmental drivers of selection using trait-climate and plasticity-climate regressions. Three major findings emerged: (1) There was significant genetic variation in traits expressed in each of the common gardens and in the phenotypic plasticity of traits across gardens, both of which were heritable. (2) Based on QST -FST comparisons, there was evidence of selection in all traits measured; however, this result varied from no effect in one garden to highly significant in another, indicating that detection of past selection is environmentally dependent. We also found strong evidence of divergent selection on plasticity across environments for two traits. (3) Traits and/or their plasticity were often correlated with population source climate (R2 up to .77 and .66, respectively). These results suggest that steep climate gradients across the Southwest have played a major role in shaping the evolution of divergent phenotypic responses in populations and genotypes now experiencing climate change.


Assuntos
Populus , Árvores , Genótipo , Fenótipo , Populus/genética , Seleção Genética , Árvores/genética
5.
Oecologia ; 199(4): 1007-1019, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35969273

RESUMO

Displacement of diverse native plant communities by low-diversity invasive communities is a global problem. In the western United States, the displacement of sagebrush-dominated communities by cheatgrass has increased since the 1920s. Restoration outcomes are poor, potentially due to soil alteration by cheatgrass. We explored the poorly understood role of plant-soil feedbacks in the dominance of cheatgrass in a greenhouse study where uninvaded sagebrush soils were conditioned with either cheatgrass, a native bunchgrass or sagebrush. Sagebrush seedlings were grown in the soils that remained following the removal of conditioning plants. We expected cheatgrass to strongly suppress sagebrush due to a change in belowground microbial communities, conspecifics to have neutral effects and the native bunchgrass to have intermediate effects as it coevolved with sagebrush but belongs to a different functional group. We assessed the effects of conditioning on sagebrush growth, tissue nutrients, and carbon allocation. We also characterized the abundance, diversity and community composition of root microbial associates. Cheatgrass strongly suppressed sagebrush growth at high and low conditioning densities, the native bunchgrass showed suppression at high conditioning densities only and conspecific effects were neutral. Tissue nutrients, amount of root colonization by soil fungi or root microbial community composition were not associated with these plant-soil feedbacks. Although we did not identify the precise mechanism, our results provide key evidence that rapid soil alteration by cheatgrass results in negative plant-soil feedbacks on sagebrush growth. These feedbacks likely contribute to cheatgrass dominance and the poor success of sagebrush restoration.


Assuntos
Artemisia , Solo , Bromus , Retroalimentação , Poaceae
6.
Nat Commun ; 13(1): 2381, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501313

RESUMO

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.


Assuntos
Florestas , Sementes , Fertilidade , Reprodução , Sementes/fisiologia , Árvores
7.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460530

RESUMO

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Assuntos
Florestas , Árvores , Biodiversidade , Clima , Fertilidade , Sementes
8.
Plant Cell Environ ; 45(6): 1664-1681, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35147232

RESUMO

Leaf carbon gain optimization in hot environments requires balancing leaf thermoregulation with avoiding excessive water loss via transpiration and hydraulic failure. The tradeoffs between leaf thermoregulation and transpirational water loss can determine the ecological consequences of heat waves that are increasing in frequency and intensity. We evaluated leaf thermoregulation strategies in warm- (>40°C maximum summer temperature) and cool-adapted (<40°C maximum summer temperature) genotypes of the foundation tree species, Populus fremontii, using a common garden near the mid-elevational point of its distribution. We measured leaf temperatures and assessed three modes of leaf thermoregulation: leaf morphology, midday canopy stomatal conductance and stomatal sensitivity to vapour pressure deficit. Data were used to parameterize a leaf energy balance model to estimate contrasts in midday leaf temperature in warm- and cool-adapted genotypes. Warm-adapted genotypes had 39% smaller leaves and 38% higher midday stomatal conductance, reflecting a 3.8°C cooler mean leaf temperature than cool-adapted genotypes. Leaf temperatures modelled over the warmest months were on average 1.1°C cooler in warm- relative to cool-adapted genotypes. Results show that plants adapted to warm environments are predisposed to tightly regulate leaf temperatures during heat waves, potentially at an increased risk of hydraulic failure.


Assuntos
Populus , Árvores , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Populus/genética , Árvores/fisiologia , Pressão de Vapor , Água
9.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34400503

RESUMO

Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.


Assuntos
Fertilidade , Modelos Biológicos , Regeneração , Árvores/crescimento & desenvolvimento , Florestas
11.
Nat Commun ; 12(1): 1242, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623042

RESUMO

Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.


Assuntos
Mudança Climática , Árvores/fisiologia , Fertilidade/fisiologia , Geografia , Modelos Teóricos , América do Norte , Estações do Ano
12.
Conserv Physiol ; 8(1): coaa061, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685164

RESUMO

Populus fremontii (Fremont cottonwood) is recognized as one of the most important foundation tree species in the southwestern USA and northern Mexico because of its ability to structure communities across multiple trophic levels, drive ecosystem processes and influence biodiversity via genetic-based functional trait variation. However, the areal extent of P. fremontii cover has declined dramatically over the last century due to the effects of surface water diversions, non-native species invasions and more recently climate change. Consequently, P. fremontii gallery forests are considered amongst the most threatened forest types in North America. In this paper, we unify four conceptual areas of genes to ecosystems research related to P. fremontii's capacity to survive or even thrive under current and future environmental conditions: (i) hydraulic function related to canopy thermal regulation during heat waves; (ii) mycorrhizal mutualists in relation to resiliency to climate change and invasion by the non-native tree/shrub, Tamarix; (iii) phenotypic plasticity as a mechanism for coping with rapid changes in climate; and (iv) hybridization between P. fremontii and other closely related Populus species where enhanced vigour of hybrids may preserve the foundational capacity of Populus in the face of environmental change. We also discuss opportunities to scale these conceptual areas from genes to the ecosystem level via remote sensing. We anticipate that the exploration of these conceptual areas of research will facilitate solutions to climate change with a foundation species that is recognized as being critically important for biodiversity conservation and could serve as a model for adaptive management of arid regions in the southwestern USA and around the world.

13.
New Phytol ; 224(1): 155-165, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31209891

RESUMO

Successive droughts have resulted in extensive tree mortality in the southwestern United States. Recovery of these areas is dependent on the survival and recruitment of young trees. For trees that rely on ectomycorrhizal fungi (EMF) for survival and growth, changes in soil fungal communities following tree mortality could negatively affect seedling establishment. We used tree-focused and stand-scale measurements to examine the impact of pinyon pine mortality on the performance of surviving juvenile trees and the potential for mutualism limitation of seedling establishment via altered EMF communities. Mature pinyon mortality did not affect the survival of juvenile pinyons, but increased their growth. At both tree and stand scales, high pinyon mortality had no effect on the abundance of EMF inocula, but led to altered EMF community composition including increased abundance of Geopora and reduced abundance of Tuber. Seedling biomass was strongly positively associated with Tuber abundance, suggesting that reductions in this genus with pinyon mortality could have negative consequences for establishing seedlings. These findings suggest that whereas mature pinyon mortality led to competitive release for established juvenile pinyons, changes in EMF community composition with mortality could limit successful seedling establishment and growth in high-mortality sites.


Assuntos
Micorrizas/fisiologia , Pinus/microbiologia , Árvores/microbiologia , Biomassa , Microclima , Caules de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
14.
Front Plant Sci ; 10: 132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833952

RESUMO

Worldwide, trees are confronting increased temperature and aridity, exacerbating susceptibility to herbivory. Long-term studies comparing patterns of plant performance through drought can help identify variation among and within populations in vulnerability to climate change and herbivory. We use long-term monitoring data to examine our overarching hypothesis that the negative impacts of poor soil and herbivore susceptibility would be compounded by severe drought. We studied pinyon pine, Pinus edulis, a widespread southwestern tree species that has suffered extensive climate-change related mortality. We analyzed data on mortality, growth, male reproduction, and herbivory collected for 14-32 years in three areas with distinct soil-types. We used standardized precipitation-evapotranspiration index (SPEI) as a climate proxy that summarizes the impacts of drought due to precipitation and temperature variation on semi-arid forests. Several key findings emerged: (1) Plant performance measurements did not support our hypothesis that trees growing in stressful, coarse-textured soils would suffer more than trees growing in finer-textured soils. Stem growth at the area with coarse, young cinder soils (area one) responded only weakly to drought, while stem growth on more developed soils with sedimentary (area two) and volcanic (area three) substrates, was strongly negatively affected by drought. Male reproduction declined less with drought at area one and more at areas two and three. Overall mortality was 30% on coarse cinder soils (area one) and averaged 55% on finer soil types (areas two and three). (2) Although moth herbivore susceptible trees were hypothesized to suffer more with drought than moth resistant trees, the opposite occurred. Annual stem growth was negatively affected by drought for moth resistant trees, but much less strongly for moth susceptible trees. (3) In contrast to our hypothesis, moths declined with drought. Overall, chronically water-stressed and herbivore-susceptible trees had smaller declines in performance relative to less-stressed trees during drought years. These long-term findings support the idea that stressed trees might be more resistant to drought since they may have adapted or acclimated to resist drought-related mortality.

16.
Commun Biol ; 1: 116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271996

RESUMO

Most plants engage in symbioses with mycorrhizal fungi in soils and net consequences for plants vary widely from mutualism to parasitism. However, we lack a synthetic understanding of the evolutionary and ecological forces driving such variation for this or any other nutritional symbiosis. We used meta-analysis across 646 combinations of plants and fungi to show that evolutionary history explains substantially more variation in plant responses to mycorrhizal fungi than the ecological factors included in this study, such as nutrient fertilization and additional microbes. Evolutionary history also has a different influence on outcomes of ectomycorrhizal versus arbuscular mycorrhizal symbioses; the former are best explained by the multiple evolutionary origins of ectomycorrhizal lifestyle in plants, while the latter are best explained by recent diversification in plants; both are also explained by evolution of specificity between plants and fungi. These results provide the foundation for a synthetic framework to predict the outcomes of nutritional mutualisms.

17.
Front Plant Sci ; 9: 536, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760715

RESUMO

High temperatures associated with climate change are expected to be detrimental for aspects of plant reproduction, such as pollen viability. We hypothesized that (1) higher peak temperatures predicted with climate change would have a minimal effect on pollen viability, while high temperatures during pollen germination would negatively affect pollen viability, (2) high temperatures during pollen dispersal would facilitate acclimation to high temperatures during pollen germination, and (3) pollen from populations at sites with warmer average temperatures would be better adapted to high temperature peaks. We tested these hypotheses in Pinus edulis, a species with demonstrated sensitivity to climate change, using populations along an elevational gradient. We tested for acclimation to high temperatures by measuring pollen viability during dispersal and germination stages in pollen subjected to 30, 35, and 40°C in a factorial design. We also characterized pollen phenology and measured pollen heat tolerance using trees from nine sites along a 200 m elevational gradient that varied 4°C in temperature. We demonstrated that this gradient is biologically meaningful by evaluating variation in vegetation composition and P. edulis performance. Male reproduction was negatively affected by high temperatures, with stronger effects during pollen germination than pollen dispersal. Populations along the elevational gradient varied in pollen phenology, vegetation composition, plant water stress, nutrient availability, and plant growth. In contrast to our hypothesis, pollen viability was highest in pinyons from mid-elevation sites rather than from lower elevation sites. We found no evidence of acclimation or adaptation of pollen to high temperatures. Maximal plant performance as measured by growth did not occur at the same elevation as maximal pollen viability. These results indicate that periods of high temperature negatively affected sexual reproduction, such that even high pollen production may not result in successful fertilization due to low germination. Acquired thermotolerance might not limit these impacts, but pinyon could avoid heat stress by phenological adjustment of pollen development. Higher pollen viability at the core of the distribution could be explained by an optimal combination of biotic and abiotic environmental factors. The disconnect between measures of growth and pollen production suggests that vigor metrics may not accurately estimate reproduction.

18.
Mycorrhiza ; 28(2): 197-201, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29290018

RESUMO

This report reviews important advances in mycorrhizal research that occurred during the past 2 years. We highlight major advancements both within and across levels of biological organization and describe areas where greater integration has led to unique insights. Particularly active areas of research include exploration of the mechanisms underpinning the development of the mycorrhizal symbiosis, the mycorrhizal microbiome, comparisons among types of mycorrhizas from molecular to ecosystem scales, the extent and function of mycorrhizal networks and enhanced understanding of the role of mycorrhizas in carbon dynamics from local to global scales. The top-tier scientific journals have acknowledged mycorrhizas to be complex adaptive systems that play key roles in the development of communities and ecosystem processes. Understanding the mechanisms driving these large-scale effects requires integration of knowledge across scales of biological organization.


Assuntos
Ciclo do Carbono , Microbiota , Micorrizas/fisiologia , Simbiose , Ecossistema , Micorrizas/genética
19.
Front Plant Sci ; 9: 1831, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619404

RESUMO

Understanding how genetic-based traits of plants interact with climate to affect associated communities will help improve predictions of climate change impacts on biodiversity. However, few community-level studies have addressed such interactions. Pinyon pine (Pinus edulis) in the southwestern U.S. shows genetic-based resistance and susceptibility to pinyon needle scale (Matsucoccus acalyptus). We sought to determine if susceptibility to scale herbivory influenced the diversity and composition of the extended community of 250+ arthropod species, and if this influence would be consistent across consecutive years, an extreme drought year followed by a moderate drought year. Because scale insects alter the architecture of susceptible trees, it is difficult to separate the direct influences of susceptibility on arthropod communities from the indirect influences of scale-altered tree architecture. To separate these influences, scales were experimentally excluded from susceptible trees for 15 years creating susceptible trees with the architecture of resistant trees, hereafter referred to as scale-excluded trees. Five patterns emerged. (1) In both years, arthropod abundance was 3-4X lower on susceptible trees compared to resistant and scale-excluded trees. (2) Species accumulation curves show that alpha and gamma diversity were 2-3X lower on susceptible trees compared to resistant and scale-excluded trees. (3) Reaction norms of arthropod richness and abundance on individual tree genotypes across years showed genotypic variation in the community response to changes in climate. (4) The genetic-based influence of susceptibility on arthropod community composition is climate dependent. During extreme drought, community composition on scale-excluded trees resembled susceptible trees indicating composition was strongly influenced by tree genetics independent of tree architecture. However, under moderate drought, community composition on scale-excluded trees resembled resistant trees indicating traits associated with tree architecture became more important. (5) One year after extreme drought, the arthropod community rebounded sharply. However, there was a much greater rebound in richness and abundance on resistant compared to susceptible trees suggesting that reduced resiliency in the arthropod community is associated with susceptibility. These results argue that individual genetic-based plant-herbivore interactions can directly and indirectly impact community-level diversity, which is modulated by climate. Understanding such interactions is important for assessing the impacts of climate change on biodiversity.

20.
Proc Natl Acad Sci U S A ; 114(42): 11169-11174, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973879

RESUMO

Plant genetic variation and soil microorganisms are individually known to influence plant responses to climate change, but the interactive effects of these two factors are largely unknown. Using long-term observational studies in the field and common garden and greenhouse experiments of a foundation tree species (Pinus edulis) and its mutualistic ectomycorrhizal fungal (EMF) associates, we show that EMF community composition is under strong plant genetic control. Seedlings acquire the EMF community of their seed source trees (drought tolerant vs. drought intolerant), even when exposed to inoculum from the alternate tree type. Drought-tolerant trees had 25% higher growth and a third the mortality of drought-intolerant trees over the course of 10 y of drought in the wild, traits that were also observed in their seedlings in a common garden. Inoculation experiments show that EMF communities are critical to drought tolerance. Drought-tolerant and drought-intolerant seedlings grew similarly when provided sterile EMF inoculum, but drought-tolerant seedlings grew 25% larger than drought-intolerant seedlings under dry conditions when each seedling type developed its distinct EMF community. This demonstration that particular combinations of plant genotype and mutualistic EMF communities improve the survival and growth of trees with drought is especially important, given the vulnerability of forests around the world to the warming and drying conditions predicted for the future.


Assuntos
Aclimatação , Secas , Micorrizas , Pinus/genética , Mudança Climática , Pinus/microbiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...